математика
Чиндяновская СОШ Вверх математика немецкий язык Начальные классы

 

Кечуткина Татьяна Васильевна.

 Дата рождения - 1964г.

 Образование - высшее, МГУ им. Н.П.Огарева,

факультет "Математика".учитель математики

 

 

урок геометрии

  Тема :Теорема Пифагора.(2ч.)

Цель: 1. Рассмотреть теорему Пифагора и показать применение этой теоремы при решении задач.

          2. Вызвать интерес уч-ся к изучению теоремы Пифагора и чтению математической литературы.

          3. Продолжить формирование навыков самостоятельного изучения доказательств, отличных

          от данных в учебнике .                             

          4. Развивать внимание уч-ся к информации учителя на уроке.

 

 

            План работы.

 

           1. Организационный момент.

           2. Историческая справка.

           3. Теорема Пифагора.

           4. Математическая викторина.

           5. Подведение итогов.

 

 

 

Историческая справка


О теореме Пифагора

                                                                                   А. фон Шамиссо
                                                                     ( Перевод А. Хованского)

                             Уделом истины не может быть забвенье,
    Как только мир ее увидит взор;
    И теорема та, что дал нам Пифагор,
    Верна теперь, как в день ее рожденья. 
    За светлый луч с небес вознес благодаренье
    Мудрец богам не так, как было до тех пор.
    Ведь целых сто быков послал он под топор,
    Чтоб их сожгли как жертвоприношенье.
    Быки с тех пор, как только весть услышат,
    Что новой истины уже следы видны,
    Отчаянно мычат и ужаса полны: 
    Им Пифагор навек внушил тревогу.
    Не в силах преградить той истине дорогу
    Они, закрыв глаза, дрожат и еле дышат.
 
         Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.

       Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует.

 

  Способы  доказательства теоремы

 

  С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.

 

Доказательства, основанные на использовании понятия равновеликости фигур.

При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

  • На риссунке изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c2 = a2 + b2. Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

 

Аддитивные доказательства.

Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

  • Доказательство Энштейна  основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников.

Здесь: ABC – прямоугольный треугольник с прямым углом C; CОMN; CK^MN; PO||MN; EF||MN.

Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

  • На рис. 1приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF.

Докажите теорему с помощью этого разбиения.

  • На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 2 здесь ABC – прямоугольный треугольник с прямым углом C).
  • Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис.3 Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.
  • Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

рис.1

рис.2

рис.3

 

Доказательства методом построения.

Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

  • На рисунке изображена обычная Пифагорова фигура – прямоугольный треугольник ABC с построенными на его сторонах квадратами. К этой фигуре присоединены треугольники 1 и 2, равные исходному прямоугольному треугольнику.

Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь CОEP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

  • На рисункеПифагорова фигура достроена до прямоугольника, стороны которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.

    Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

  • Рисунок иллюстрирует доказательство, приведенное Нассир-эд-Дином (1594 г.). Здесь: PCL – прямая;

KLOA = ACPF = ACED = a2;

LGBO = CBMP = CBNQ = b2;

AKGB = AKLO + LGBO = c2;  

отсюда  c2 = a2 + b2.

        

  • Рисунок  иллюстрирует еще одно более оригинальное доказательство, предложенное Гофманом.
    Здесь: треугольник ABC с прямым углом C; отрезок BF перпендикулярен CB и равен ему, отрезок BE перпендикулярен AB и равен ему, отрезок AD перпендикулярен AC и равен ему; точки F, C, D принадлежат одной прямой; четырехугольники ADFB и ACBE равновелики, так как ABF=ECB; треугольники ADF и ACE равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим

Алгебраический метод доказательства.

  • Рисунок иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.
  • Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.

На рис.  ABC – прямоугольный, C – прямой угол, CM^AB, b1 – проекция катета b на гипотенузу, a1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

Из того, что DABC подобен DACM следует

b2 = cb1; (1)

из того, что DABC подобен DBCM следует

a2 = ca1. (2)

Складывая почленно равенства (1) и (2), получим a2 + b2 = cb1 + ca1 = c(b1 + a1) = c2.

Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

  • Доказательство Мёльманна.
    Площадь данного прямоугольного треугольника, с одной стороны, равна
    с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем:

откуда следует, что c2=a2+b2.

  • Доказательство Гарфилда.
    На рисунке  три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна

во втором 

Приравнивая эти выражения, получаем теорему Пифагора.

 

Задача. На берегу ручья , ширина которого 3 м, рос тополь .Порыв ветра сломал его на          высоте 4 м от земли  ручья так ,что верхушка тополя коснулась другого берега ручья. Определите высоту тополя ,если известно, что ствол его  расположен вертикально поверхности ручья.

 

  c 2=42+32

  c2=25

  c=√25=5(м)

  4м+5м=9м ( высота тополя)

                      Ответ: 9 метров

 

 

Математическая викторина

 

  •  За что был увенчан лавровым венком древнегреческий философ и математик          Пифагор?

  •  Как в средние века иначе называют теорему Пифагора?

  •  Почему в Средней Азии теорему Пифагора называют теоремой невесты?                 

  •  Какую теорему предлагали каждому , кто держал экзамен на звание "магистра       математики"?

  •  Сколько различных доказательств имеет теорема Пифагора?

  •  Где предлагалось самое короткое доказательство теоремы Пифагора?

  •  Что можно вычислять с помощью теоремы Пифагора?

  •  В каком году и где выпущена самая оригинальная марка?

  •  Сформулируйте теорему Пифагора.

 

  Используемая литература:

 

         1. Учебник геометрии (7-9 Атанасян).

        2. В. Литцман "Теорема Пифагора"М.1960,стр.8.

        3. Ф.Г.Петрова Математические вечера стр.86.

        4. Энциклопедический словарь юного математика М "Педагогика" 1985.

        5. Календарь филателиста 1975 г.

        6. Глейзер Г.И. История математики в школе 7-8 класс.

Чиндяновская СОШ Вверх математика немецкий язык Начальные классы